Endocrinology is a medical specialty that focuses on the diagnosis and treatment of diseases related to hormones. Endocrinologists are experts in managing and treating diseases related to the endocrine system, which includes the thyroid, pituitary, adrenal glands, and pancreas. Endocrinologists are trained to diagnose and treat conditions such as diabetes, thyroid disorders, pituitary disorders, and other conditions related to hormones. Endocrinologists also specialize in reproductive health and fertility issues, including PCOS.
Endocrinology is a complex field that requires a deep understanding of the endocrine system and its role in regulating the body’s hormones. Endocrinologists must be able to interpret laboratory tests and understand the underlying causes of endocrine disorders. They must also be able to develop individualized treatment plans to address the specific needs of each patient.
Diagnosing PCOS and Diabetes
Endocrinologists are experts in diagnosing and managing PCOS and diabetes. PCOS is a hormonal disorder that affects the ovaries, and it is characterized by irregular menstrual cycles, excess facial and body hair, and infertility. To diagnose PCOS, an endocrinologist will perform a physical exam and order laboratory tests to measure hormone levels. The endocrinologist will also ask the patient about her symptoms and family history to determine if PCOS is the cause.
Diabetes is a chronic condition that affects the body’s ability to process sugar. To diagnose diabetes, an endocrinologist will perform a physical exam and order laboratory tests to measure blood sugar levels. The endocrinologist may also order imaging tests to check for signs of diabetes-related complications.
Treating PCOS and Diabetes
Once the endocrinologist has diagnosed PCOS or diabetes, they will develop an individualized treatment plan to address the patient’s specific needs. For PCOS, the endocrinologist may recommend lifestyle changes such as weight loss, exercise, and dietary changes to help manage symptoms. The endocrinologist may also prescribe medications to regulate hormone levels and improve fertility.
For diabetes, the endocrinologist may recommend lifestyle changes such as weight loss, exercise, and dietary changes to help manage blood sugar levels. The endocrinologist may also prescribe medications to help regulate blood sugar levels. In addition, the endocrinologist may recommend regular check-ups to monitor the patient’s progress and to adjust the treatment plan if needed.
Conclusion
Endocrinology plays an important role in managing PCOS and diabetes. Endocrinologists are experts in diagnosing and treating these conditions, and they are trained to develop individualized treatment plans that address the specific needs of each patient. By working with an endocrinologist, patients can get the help they need to manage their PCOS or diabetes and achieve their health goals.
Endocrinology is a complex field that requires a deep understanding of the endocrine system and its role in regulating the body’s hormones. An endocrinologist can help patients with PCOS and diabetes manage their conditions and achieve their health goals. By working with an endocrinologist, patients can get the help they need to manage their PCOS or diabetes and achieve their health goals.
Each month, The Clinical Advisormakes one new clinical feature available ahead of print. Don’t forget to take the poll. The results will be published in the next month’s issue.
A 35-year-old woman is seen in the outpatient clinic for evaluation of an incidental pituitary macroadenoma. Her medical history is significant for hypertension, diabetes, hyperlipidemia, polycystic ovary syndrome, and obesity. She initially presented to the emergency department (ED) a week ago after an episode of right visual field changes that she described as waviness in her right eye and right hemibody sensory changes without motor deficits. While in the ED, she underwent a full workup for possible stroke, which was negative. Magnetic resonance imaging (MRI) of her brain without contrast revealed a 12-mm pituitary lesion; a repeat MRI with contrast was then ordered (Figure). No serum hormonal panel was available for review from ED records.
Figure. Magnetic resonance imaging of the case patient. Left image: sagittal view. Right image: coronal view with contrast. Credit: Melissa Wasilenko, MSN, RN
Upon further questioning of her medical history during the clinic visit, the patient notes that a few years ago she was attempting to become pregnant and was evaluated by her gynecologist for amenorrhea. At that time, she reportedly completed an endocrine laboratory workup that showed a slightly elevated prolactin level between 30 and 40 ng/mL (normal level in nonpregnant women, <30 ng/mL). Per the patient, the minimal elevation was not enough to concern the gynecologist and no MRI was ordered at that time. Her gynecologist recommended that she lose weight. Her menses returned to normal with weight loss. With a history of disrupted menstrual cycles, infertility, and patient reported elevated prolactin level, there is high suspicion for endocrine disruption. A complete pituitary panel is ordered again to examine the current hormone function considering the recent MRI findings. This revealed a prolactin of 33.7 ng/ml, and all other hormonal levels were within normal limits.
Because the patient reports multiple episodes of visual disturbances and the size of the pituitary adenoma on MRI, a neuro-ophthalmology referral is initiated for visual field testing and to determine if the pituitary macroadenoma is causing mass effect and compressing the optic nerve. The neuro-ophthalmologist found she had no visual field defect from her adenoma on visual field testing and believed that her visual disturbances were probably migraine in nature.
Discussion
Pituitary gland tumors are usually found incidentally on imaging studies obtained for other reasons or in workup of patients with abnormal endocrine hormone levels (both decreased and increased levels) or with symptoms of mass effect from the lesions.1 These tumors are typically benign in nature; cases with malignancy are extremely rare.1 The exact pathophysiology of pituitary adenomas remains unknown but is thought to be linked to heredity, hormonal influences, and genetic mutations.1
Pituitary tumors are commonly found in adults between the ages of 35 and 60 years of age.2,3 The estimated prevalence of pituitary adenomas varies widely by study and findings are typically based on autopsy and radiology data. Surveillance, Epidemiology, and End Results (SEER) Program data from 2004 to 2018 show an incidence rate of pituitary adenomas and pituitary incidentalomas of 4.28 ± 0.04 and 1.53 ± 0.02 per 100,000 population.4 Pituitary tumors have been found in 14.4% of unselected autopsy cases and 22.5% of radiology tests.1
The SEER data suggest that incidence rates are similar among women and men but are higher among women in early life and higher among males in later life.5 Rates of prolactinomas (prolactin-secreting tumors) and corticotropinomas (adrenocorticotropic hormone-secreting tumors; Cushing disease) are higher in women than men.6
Earlier SEER data showed a significantly higher incidence of pituitary adenomas in Black individuals compared with other racial/ethnic groups; several factors may account for this discrepancy such as the higher stroke rate in this population, which leads to a greater likelihood for brain imaging that detects incident pituitary tumors.5
Incidental findings of pituitary adenoma may be found during workup related to hormonal dysfunction (amenorrhea, galactorrhea, fertility disorders, sexual dysfunction), noticeable vision change, new-onset headaches, or imaging performed for other diagnostic purposes.7
Pituitary Types
Pituitary tumor types are differentiated by location, size, and functional status. Pituitary tumors commonly arise from the anterior portion of the gland (adenohypophysis) and rarely from the posterior portion (neurohypophysis).2 Both adenohypophyseal and neurohypophyseal tumors are commonly benign and slow-growing.1 Malignant pituitary tumors account for less than 1% of pituitary lesions and are usually metastases from breast and lung cancers.3 Adenohypophyseal carcinoma is rare, with less than 140 reported cases.2
Pituitary tumors are categorized by the size1,2:
Microadenomas (<10 mm)
Macroadenomas (>10 mm to 40 mm)
Giant adenomas (>40 mm)
Pituitary adenomas are further classified as functioning (hormone-secreting) or nonfunctioning (nonsecreting).1,6 If the adenoma is functioning, hormone levels will be found in excess. If the levels are within normal limits, a nonfunctioning pituitary adenoma is suspected.
Functioning Tumors
Approximately 65% of all pituitary adenomas are functioning tumors.2 Functioning pituitary adenomas present in various ways depending on which hormone is involved and the level of hormone secretion. Prolactinomas are the most common type of functioning adenomas followed by growth hormone-secreting and adrenocorticotropic hormone-secreting pituitary tumors. Adenomas secreting thyrotropin and follicle-stimulating hormone are less commonly found.2 Clinical features of functional pituitary adenomas are outlined in Table 1.2.8
Table 1. Clinical Features and Laboratory Findings of Functioning Pituitary Adenomas
Nonfunctioning Tumors
Approximately 20% to 30% of pituitary adenomas are nonfunctional.3 These tumors may go undiagnosed for years until the mass of the tumor starts to effect surrounding structures and causing secondary symptoms such as compression of the optic chiasm causing vision impairments.
Nonfunctioning pituitary adenomas and prolactinomas (functioning) are the 2 most common types of pituitary adenomas.2,3 The consulting clinician must understand the difference in pathology of these 2 types of lesions, what diagnostic test to order, how to interpret the test results, and which specialty to refer the patient to best on the initial workup findings.
Initial Workup
Proper baseline workup should be initiated before referring patients with incidental pituitary adenoma to a specialist. The initial workup includes imaging, blood work to determine if the pituitary adenoma is causing hormonal dysfunction, and neuro-ophthalmology referral for visual field testing to determine if the optic nerve/chiasm is impacted.
Imaging
The most accurate diagnostic modality of pituitary gland pathology is MRI with and without contrast. The MRI should focus on the hypothalamic-pituitary area and include contrasted imaging to evaluate the soft tissue within the intracranial structure.9 The coronal and sagittal views are the best to display the pituitary gland width and height and identify abnormalities.9 The MRI provides a detailed evaluation of the pituitary gland related to adjacent structures within the skull, which helps to detect microalterations of the pituitary gland.10 If a pituitary adenoma is an incidental finding on another imaging modality (such as a computed tomography scan or MRI without contrast), an MRI with and without contrast that focuses on the pituitary gland should be obtained.
Pituitary Laboratory Panel
A complete pituitary panel workup should be obtained including prolactin, thyrotropin, free thyroxine, cortisol (fasting), adrenocorticotropic hormone, insulinlike growth factor 1, growth hormone, follicle-stimulating hormone, luteinizing hormone, estradiol in women, and total testosterone in males.1 Tests should be completed in the morning while fasting for the most accurate results. For instance, normally cortisol levels drop during fasting unless there is abnormality. Table 2 below shows normal laboratory ranges for a complete pituitary panel.
Serum prolactin levels can slightly increase in response to changes in sleep, meals, and exercise; emotional distress; psychiatric medications; and oral estrogens. If the initial prolactin level is borderline high (21-40 ng/mL), the test should be repeated. Normal levels are higher in women than in men. Microadenomas may cause slight elevations in prolactin level (ie, <200 ng/mL), while macroadenomas are likely to cause greater elevations (ie, >200 ng/mL).1 Patients with giant prolactinomas typically present with prolactin levels ranging from 1000 ng/mL to 100,000 ng/mL.11
Perimetry
Pituitary adenomas may cause ophthalmologic manifestations ranging from impaired visual field to diplopia because of upward displacement of the optic chiasm. The optic chiasm is located above the pituitary gland and a pituitary tumor that grows superiorly can cause compression in this area.12 Optic chiasm compression from a pituitary adenoma commonly causes bitemporal hemianopsia.2 If the tumor volume is promptly reduced by surgical resection or medication (in the case of prolactinomas), initial vision changes due to compression may be reversible.12
Baseline and routine follow-up perimetry are important in patients with pituitary adenoma, as symptoms of optic chiasm compression may go unnoticed by patients as visual field deficits often develop gradually. Also, post-treatment perimetry assessments can be used to compare the initial testing to evaluate reversible visual field deficits. It is recommended that patients with pituitary adenomas (both function and nonfunctiong) receive neuro-ophthalmologic evaluations twice a year to ensure no visual changes have occurred.12
Referral to a Specialist
Management of pituitary adenomas requires a multidisciplinary team of specialists including endocrinologists, neurosurgeons, and neuro-ophthalmologists. The type of adenoma governs which specialist patients with incidental adenoma should see first.
Patients with functioning pituitary adenomas should be referred to an endocrinologist before a neurosurgeon. The most prevalent functioning adenomas, prolactinoma, are initially treated with dopamine agonist medications.1,6 A patient with prolactinoma would only need to see a neurosurgeon if they have a macroadenoma that is not responsive or only partially responsive to dopamine agonists therapy or is causing vision deficits related to compression of the optic chiasm.2
Patients with nonfunctioning pituitary adenomas should first be referred to a neurosurgeon to discuss surgical options versus observation. The recommended treatment for patients with nonfunctioning adenomas and clinical features of mass effect (ie, visual deficits) is surgery.1,6 If the patient is asymptomatic with no signs of visual field deficits, the neurosurgery team may recommend continued surveillance with serial imaging and serial perimetry screenings.12
The patient in the case was found to have a nonfunctioning pituitary adenoma (prolactin was 33.7 ng/mL). Neuro-ophthalmology did not find any visual field defect upon initial assessment; the patient decided to continue observation with serial imaging (MRI) and serial neuro-ophthalmology assessments. Serial imaging with MRI brain revealed slow but real progression of the pituitary macroadenoma (12 mm initially; 13 mm 6 months later; and 14 mm 1 year from initial MRI findings). Although the patient still did not have any visual field defects per the neuro-ophthalmology reassessments, the documented growth on MRI over a short period of time was enough to make the patient more amendable to surgical resection. The patient underwent trans-sphenoidal resection of the pituitary lesion approximately 16 months after discovery of the tumor.
Conclusion
A thorough workup including laboratory testing, imaging, and vision field testing is the foundation of an effective referral process for pituitary adenomas and guides which specialist is consulted first. If patients are referred before initial workup is completed, delays in care, unnecessary specialty visits, and increased overall health care costs may occur.
Melissa Wasilenko, MSN, RN, is a registered nurse at Lyerly Neurosurgery in Jacksonville, Florida. She is currently pursuing a doctorate in nursing practice with a focus in family medicine at the University of North Florida in Jacksonville.
Meeting Number (Access Code): 133 727 0164 Your phone/computer will be muted on entry.
Slides will be available on the day of the talk here
There will be plenty of time for questions using the chat button. Meeting Password: pcos
For more information, email us at mail@goodhormonehealth.com
Murfreesboro Medical Clinic & SurgiCenter is committed to meeting the needs of Rutherford County’s growing community. In addition to adding two new locations in 2019, MMC will be adding five new doctors to its team of physicians.
The physicians joining MMC this fall are: Christopher Albergo, M.D. (Endocrinology), Lauren Blackwell, D.O. (Pediatrics), C. Brad Bledsoe, M.D. (Dermatology), Britni Caplin, M.D. (ENT), and Brittany Cook, M.D. (Ophthalmology).
“With a national shortage of physicians, it is becoming more and more challenging to find quality physicians to meet the growing healthcare needs of our community,” noted Joey Peay, MMC’s Chief Executive Officer. “For MMC to find five quality physicians to join us in 2019 in addition to the nine that began practicing at MMC in 2018 is truly remarkable! Each of them will be a valuable member of our medical team and a wonderful member of the Murfreesboro community.”
Christopher Albergo, M.D. is a board-certified Endocrinologist skilled in general endocrinology, including Hypothyroid, Parathyroid, Thyroid Cancer, Graves’ Disease, Pituitary disorders, Adrenal disorders, Hypogonadism , PCOS, Obesity, Diabetes and Osteoporosis.
“Dr. Harvey Cushing, who is the one responsible for discovering our disease, found some of his patients in circuses.”
Other responses so far:
OP: Thank you for sharing this Mary Kelly O’Connor… as sad as this is… that our past cushing’s friends were on display as freaks in circuses, i am happy he was able to find them and help them and further his research.
Mary Kelly O’Connor: I remembered from reading this book many years ago.
For a long time, I was “mad” at circuses until I realized that they were the only people offering jobs to Cushies and others who should have had a better chance at life.
I know the circuses were exploiting the “freaks” but at least they could find a place in society.
I am so thankful to Dr. Cushing and the work he did…for all of us. I hate the disease but I am so glad that I’m alive after it was discovered and I didn’t have to run away to join a circus, too.
OP: Mary Kelly O’Connor i also am thankful to dr harvey cushing… even though i did read he was sorta an asshole arrogant jerk. Lol. I guess when you are the father of neuroscience you are entitled though…
Mary Kelly O’Connor: My first “real” endo, the one who diagnosed me was that description. But he got me into NIH for surgery and I’m thankful to him, too. (But I never went back after I found another endo. LOL)
The first picture shows me in peak performance shape weighing about 105 lbs standing at 5’4″ contrasted with how I look now at about 147 lbs with swollen legs&arms, puffy red face, fat above the collar bone and on the neck, and lots of weight gain in the butt/thigh area. It really looks like I don’t have a neck anymore.
Following are photos of how my face has steadily changed every few months. Notice how I used to have a very defined heart-shaped face with a pointy chin, and now have a round face with jowls and numerous neck lines/rolls that extend past my collar bone.
A new member from Nottingham, UK was told she had cyclical edema, then PCOS which all turned out to be Cushing’s.
There’s other stuff happening but you’ll just have to read the boards to find out what!
(Please note that I’m sharing these from the Cushings-Help.com message boards. You must be a logged-in member of that board to read them. Log in or register at http://cushings.invisionzone.com )
A new feature! A weekly (or thereabouts) summary of the Message Board features.
There has been a discussion about a new state regulation that went into effect July 1st, affecting insurance that will not cover anything ordered or prescribed by out-of-state doctors that aren’t enrolled in some quality control database. Find that here.
There have been Gallery and Blog updates as well a newcomer wondering about PCOS vs Cushing’s.
The “Reputation” system is back so you can vote for posts that you especially like – but not your own. Sorry!
I’ve made one board – What do *YOU* Think – for people to post questions and get answers from other members.
There’s other stuff happening but I just thought of this post today and didn’t keep track.
(Please note that I’m sharing these from the Cushings-Help.com message boards. You must be a logged-in member of that board to read them. Log in or register at http://cushings.invisionzone.com )